网站首页石油化工产品行业典型应用润滑解决方案润滑知识销售与服务淘宝旗舰店


 船舶航运船身及船舱制造行业润滑解决方案

船舶航运 船身及船舱制造行业润滑解决方案



船舶航运 船身及船舱制造
船壳又称船壳板,船的外壳,它包括船侧板和船底板。船体的几何形状是由船壳板的形状决定的。船体承受的纵向弯曲力、水压力、波浪冲击力等各种外力首先作用在船壳板上。船体骨架是由龙骨、旁龙骨、肋骨、龙筋、舭龙骨、船首柱和船尾柱构成,它们共同组成了船舶骨架。...
行业概况
舰船有民用和军用船只两种。然而,无论是民用功能还是军用功能,一艘完整的舰船都离不开“材料”二字。只有材料的最优化组合,才能成就一艘无可匹敌的战舰。既而,寻求适合的新型材料就成为了舰船发展、进步的重中之重。 
我国对于舰船高新技术的发展给予了高度重视,而舰船高新技术的发展主要放在新武器的开发、舰艇隐身化、新动力系统的采用和新船型的研究这几个方面上。 
对于舰船的民用功能而言,传统的结构材料就可以满足需求;但对于某些特殊的结构(例如表面效应船、混合式水翼船、深潜器、大深度鱼雷等的壳体结构)则要求使用高比强度的材料,以减轻壳体的重量,提供合理的有效载荷。那么,就必须使用新金属结构材料、先进树脂基复合材料、结构陶瓷材料、高温结构材料等新型结构材料。 

1.新金属结构材料 
Al-Li合金是其典型代表。Al-Li合金最显著的特点是密度低,弹性模量高。在强度相当的条件下,Al-Li合金的密度比常规的2024、7075铝合金低约10%,而弹性模量则要高10%。目前,成熟的Al-Li合金有2090、8090、8091、8092等牌号,抗拉强度在500 MPa 上下。新近研制的AA5091合金的密度为2.57 g/cm3,抗拉强度为412 MPa,弹性模量为79.2×103 MPa,耐蚀性优良。美国海军正资助用AA5091合金锻件制造重型鱼雷的燃料舱分段。 
与其它新型结构材料相比,Al-Li合金作为轻质高强度材料的显著优势是成本较低,可以利用传统设备生产。除熔铸外,Al-Li合金的挤压、轧制、锻造和热处理均可利用现有的设备和工艺进行,无特殊要求。 
2.先进树脂基复合材料 
先进树脂基复合材料是指用碳纤维、陶瓷纤维、芳纶纤维等增强的聚合物复合材料,具有比传统结构材料优越得多的力学性能。例如分别用碳纤维、芳纶纤维和碳化硅纤维增强的环氧树脂复合材料的密度为1.4~2.0 g/cm3,拉伸强度为1.5~1.8 GPa。这些复合材料的拉伸强度略高于普通钢材,而比强度则为普通钢材的4~6倍,比模量为普通钢材的2~3倍。 
其往往还兼有耐腐蚀、振动阻尼和吸收电磁波等功能,但其价格昂贵,只能用在舰船上关键性的部位,如大型核潜艇的声纳导流罩、大深度鱼雷的壳体、深海潜水器壳体以及高性能艇的艇体结构、水面舰艇的重要甲板构件等处。美国“洛杉矶”级核潜艇的声纳导流罩长7.6 m,最大直径8.1 m,是目前世界上最大的先进树脂基复合材料制品。美国的“佩里”号驱逐舰上首次用芳纶纤维增强塑料制作装甲。 
3.结构陶瓷材料 
陶瓷的强度和弹性模量很高,而且具有耐腐蚀、耐磨损、耐高温的优点,密度又比一般金属材料低,是很有发展潜力的高比强度材料。结构陶瓷材料在舰船上可能的应用主要有两方面:(1)利用其高比强度制造大深度潜水器的耐压壳体;(2)利用其高硬度和高的断裂能制作轻质装甲。 
实践证明,在同样排水量(454 kg)的情况下,氧化铝陶瓷壳体比Ti-6Al-4V壳体的有效载荷高166%;为达到同样的有效载荷,钛壳体的排水量必须增加50%,其重量则增加83%。除此而外,除此而外,陶瓷壳体还具有耐腐蚀、电绝缘、非磁性、可透过辐射等优点。 
陶瓷装甲的主要优点是质量轻,其质量有效系数(对付已知威胁所需的普通钢装甲的面密度与陶瓷装甲的面密度之比)颇高。陶瓷材料通过其密度效应、吸能效应和磨损效应可发挥很强的防弹能力。目前装甲陶瓷材料主要有氧化铝、碳化硅、碳化硼、二硼化钛等几种,其中以氧化铝应用最为广泛。氧化铝陶瓷装甲既可以对付穿甲弹,也可以对付破甲弹,其质量有效系数约为2.5~3.5。这种材料对于希望尽量减轻装甲重量的舰船来说,具有很大的吸引力。 
由于陶瓷材料本身性能的局限性,单独用陶瓷作装甲的效果并不理想,因此大多采取陶瓷复合装甲的形式。一种形式是外加保护层,即在装甲板外表面上覆盖以玻璃钢或橡胶层,以防止陶瓷装甲因受到意外碰撞而损坏,而且提高陶瓷装甲抵御多次袭击的能力。另一种形式是制成多层复合结构,即装甲板由底板层、陶瓷层、钢板层、空气层和夹芯面板层组成。 
4.高温结构材料 
传统的高温金属材料因受到熔点、高温氧化、高温蠕变等因素的制约,其工作温度难以大幅度提高。为达到提高热机的效率的目的,高温结构陶瓷和金属间化合物结构材料倍受关注。 
氮化硅、氮化铝、碳化硅、氧化锆等陶瓷具有高温强度高、抗热震性能好、高温蠕变小、密度小、耐磨损、耐腐蚀等优良性能。氮化硅陶瓷电热塞、涡流室镶块、增压器叶轮等发动机部件已在国外商业化生产,陶瓷活塞头、缸套、油咀等热机部件则正在试验中。碳化硅陶瓷可用于制作燃气轮机叶片、涡轮增压器叶片和燃烧器部件。氧化锆则适合于制作内燃机的缸套、活塞头、气门座和凸轮随动件。 
金属间化合物是介于陶瓷和金属之间的材料,质硬而脆,具有很高的熔点和高温强度,但其脆性和难以加工的问题亟待解决。在诸多金属间化合物中,TiAl化合物已初步具备了作为高温结构材料的条件,很可能率先投入实用。 
现代舰船除了要满足舰船的基本功能外,还有一定的独特专属功能,而这些所需的功能材料的种类很多。其主要有电磁力推进用超导材料、吸收雷达波材料、舰船隐蔽用消声与减振材料、水声换能材料、燃料电池用贮氢材料、永磁电机用永磁材料等。 
1.吸收雷达波材料 
隐身的目的主要是减小其雷达反射截面,从而减小遭受反射导弹攻击的危险性。而吸收雷达波材料是水面舰艇上最主要的隐身材料。舰用吸波材料有吸波涂料和结构吸波材料两种类型。 
吸波涂料大多以软磁性铁氧体作为吸波剂。在高频环境下,涂料中的铁氧体将电磁波能量转化为热能而消耗掉,从而达到吸收雷达波的目的。吸波涂料比一般涂料价格贵,涂覆工艺要求高,所以一般只施用于舰上的强反射区域。提高涂料吸波性能的途径有:(1)采用由铁氧体粉末、羰基铁粉、铁粉、镍粉、碳黑、石墨、碳化硅等组成的复合吸波剂;(2)提高吸波剂的细度,采用超微细粉末配制吸波涂料;(3)对吸波涂层进行计算机辅助设计。 
  结构吸波材料既用于制作舰船上的构件,又具有吸收雷达波的功能。结构吸波材料多数为复合材料,具有质轻、高强的优点。结构吸波材料有下列几种结构形式:(1)叠层结构:由透波层、阻抗匹配层和反射背衬等组成;(2)复合结构:先分别制成复合材料和吸波体,然后再粘合而成;(3)夹层结构:有蜂窝夹芯、波纹夹芯和框架夹芯等结构形式。 
2.减震与消声材料 
减振与消声材料的品种很多,大体上可分为阻尼金属材料、粘弹性材料、复合材料等类,而以潜艇外壳敷设的消声瓦和消声涂层最为引人注目。 
国外大型攻击型核潜艇和弹道导弹核潜艇为减小水下声辐射,大多在艇体表面粘贴消声瓦或涂敷消声涂层。消声瓦和消声涂层从以下两方面减小潜艇的特征信号:减小潜艇向海洋辐射的自噪声量级和减小潜艇反射声纳波的能量。潜艇表面的消声瓦和消声涂层主要有以下4种类型:(1)通过粘弹性损耗过程和局部应变吸收主动声纳波的吸声型;(2)把入射声能反射到远离声源的方向,并隔离艇内产生的噪声使之不进入周围海水的隔声型;(3)吸收机械振动的阻尼型;(4)降低流体水动力噪声的降流噪型。   选择消声材料时,首先要明确材料能有效地发挥消声作用的频率范围以及该材料在此频率范围内的性能,然后在理想的材料与厚度、重量、体积、费用等因素之间进行平衡。艇体上的消声材料厚度通常为30~50 mm,厚度在很大程度上取决于频率要求。大型潜艇的消声层面积达1000 m2以上,重量可达150 kg/m2。 
3.水声换能材料 
水声换能器的转换元件通常用压电材料或压磁材料制成,它们统称为水声换能材料。舰船上使用的传统水声换能材料为锆钛酸铅(PZT)压电陶瓷。由于PZT元件的响应以及流噪的制约,要求换能材料能以大面积柔性板的形式提供使用,且要求其灵敏度远高于传统的PZT陶瓷。 
美国海军的“海狼”级攻击型核潜艇上的大孔径声纳基阵使用了密度较大的PZT压电材料。日本NGK公司研制的压电橡胶和法国研制的聚偏二氟乙烯(PVDF)是理想的候选材料。其中,压电橡胶的独特优点是既能作为消声材料,又可用来制造水听器,因而成为该级潜艇的首选用材。 
压磁材料可分为铁磁性金属材料和铁氧体材料两大类。对水声换能器用的压磁材料有两项基本的要求:一是要有大的饱和磁致伸缩应变,二是要有小的饱和磁化场强。稀土金属压磁材料是当前开发研究的重点。用此类材料制成的水声换能器具有发生信号强、器件体积小、工作频率可低于1 kHz等优点,很适用于水面舰艇和潜艇的主动声纳系统。 
4.超导材料 
超导材料在舰船上有很独特的应用。超导电磁力推进、超导雷达和超导扫雷的实现会使相应的舰船装备的面貌产生革命性的变化。 
其中,日本已建成世界上第一艘超导推进实验船“大和1号”。英国制成了世界上第一台用液氮冷却的高温超导雷达天线。我国的超导扫雷具研制也取得一定的结果。 
5.贮氢材料 
为了实现延长水下潜航的时间,提高潜艇的隐蔽性这个目的,不依赖于空气的水下推进系统(AIP)系统出现于研究课题上。燃料电池是AIP水下动力源之一,而贮氢材料是制作燃料电池的关键材料。 
贮氢材料按成分可分为稀土系、钛系、锆系和镁系4大类。作为实用性的贮氢材料应满足以下条件:(1)贮氢容量大;(2) 吸放氢速度快,特别是放氢速度快;(3)放氢温度最好在室温左右,放氢压力大于10个大气压;(4)性能稳定,可反复多次使用,对杂质敏感性小;以及(5)原材料来源丰富,价格便宜。符合以上条件的贮氢材料有Mg2Ni、MgH2、TiNi、TiFe、TiFe0.9Mn0.1、LaNi5、ZrMn2等。其中LaNi5易引发氢化物反应,有良好的贮氢性能,但价格昂贵。TiFe贮氢量大,可在室温和常压下放氢,使用寿命长,价格便宜,其最大的缺点是活化困难。MgH2重量轻,含氢量高,但其放氢温度高(0.1 MPa下287 ℃),反应速度低。ZrMn2经活化后可在室温下氢化,但放氢温度较高(0.1 MPa下210 ℃)。 
  贮氢材料在吸放氢过程中会发生膨胀和粉化现象,同时伴有放热和吸热,造成材料的破坏和吸放氢能力的降低。这是贮氢材料实用中的主要技术障碍。 
6.永磁材料 
永磁电机是用永磁材料提供磁场而制成的电机。一般而言,采用永磁电机可使电机的体积和重量减小30%~40%,效率提高5%~15%。这些特点使之非常适合于舰船上使用。 
永磁材料是永磁电机的技术关键。目前可应用于电机的永磁材料有3类:铁氧体、AlNiCo和稀土永磁材料。稀土永磁材料是后起之秀,已经历过3次重大的突破。第一代是1967年开发成功的SmCo5,具有很高的永磁特性,最大磁能积超过24 MGs*Oe。第二代是1973年推出的Sm2Co17,其剩余磁密比SmCo5的高,矫顽磁力比SmCo5的低,最大磁能积高达33 MGs*Oe。1983年开发成功的NdFeB属第三代,其剩余磁密、矫顽磁力和最大磁能积(38 MGs*Oe)均超过了第一、二代的水平。 
  NdFeB永磁材料的退磁曲线为直线,磁性能除热稳定性稍差外是目前永磁材料中最好的,而且力学性能好,原材料丰富,价格适宜,故成为永磁电机的首选永磁材料。该材料存在的主要问题是居里温度低(310 ℃),温度系数大,这影响其在高温下的使用。 
从上述描述我们可得知,可以说新型材料成就了一艘舰船的辉煌,见证了它的历史;而舰船的问世也体现了这些新型材料的优越之处,为之走向世界铺就了道路。 
有目标就有动力,有竞争才有动力。现今我国的舰船装备虽已达到很高水平,但离世界最先进水平却还有一段不小的差距。但是,我们应相信,随着一代代人的努力,会有更多的新型材料问世,推动舰船行业朝最新科技迈步。







2

微信公众号

手机版